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We examine the effect on the convective stability o f  a plane horizontal fluid layer from the resistance of  a permeable 

barrier positioned in the middle o f  the layer, and from the heat conduction o f  a solid block surrounding that layer. 

Control of the convective equilibrium stability of a fluid is an important technical problem. A method of achieving equilibrium 

stabilization involves the positioning of permeable barriers within the fluid. Their effect on the stability of a horizontal fluid layer 

bounded by isothermal plane has been studied in [1, 2]. The estimates carried out in [3], and the experiment described in [4], 

demonstrated that even rather minor barriers significantly elevate the critical Rayleigh numbers. The mechanism behind this change 

in stability is closely associated with the effect that the barrier has on the shape of the resulting critical motions. Thus, with low 

barrier resistances, a convective cell encompasses the entire height of the layer. However, as the barrier resistance increases, local 

vortices are developed on each side of the barrier, as a consequence of which the horizontal dimension of the cell initially increases, 

and then, as a two-tiered structure is formed, these perturbations diminish. 

Convective stability is also significantly affected by the thermal properties of the fluid layer boundaries. As is well known 

[51, with a reduction in the thermal conductivity of the boundaries there is a drop in equilibrium stability and an increase in the 

horizontal dimension of the convective cell. In this particular study we investigate the combined effects of these two factors on 

the equilibrium stability of the fluid. 
Let us examine the equilibrium stability of a layer of a viscous fluid, contained between horizontal planes z = +__h and separated 

by a thin permeable barrier z = 0. The layer is bounded by solid masses with identical thermal conductivity, in which a temperature 

gradient directed downward (against the z axis) is maintained. In the absence of convection, a temperature difference of 20 arises 

across the boundaries of the layer. 
The problem dealing with the behavior of small normal perturbations can be formulated for the amplitude of the vertical 

velocity component v(z) and the temperature perturbaton amplitude 0(z) within the fluid layer. In the absence of a barrier, according 

to [5], the boundary-value problem for neutral perturbations in dimensionless variables has the following form (the prime denotes 

differentiation with respect to z): 

v w  ~ 2k2v" --{- k~v = k 2 Ra O, 0" - -  kzO = - -  v, (1) 

z = ~ l :  v = v ' = O ,  •  (2) 

Problem (1), (2) contains the following dimensionless parameters: the Rayleigh number Ra --- gSOh3/vX; the wave number k, 

defining the periodicity of the perturbations in the horizontal direction; the ratio of the thermal conductivity of the fluid to the 

thermal conductivity of the block masses is given by ~. 
The effect of a thin barrier on the perturbations can be described through substitution of the boundary conditions which exist 

for z = 0. If we regard the barrier as a fine-grained boundary, following [6], we will formulate the averaged boundary conditions 

prevailing at that boundary. 
We will assume that the barrier exhibits no thermal inertia and that temperature and the heat flow at that barrier are continuous: 

z = o :  0_  - -  0 + ,  0 '_  = (3)  

where the signs - -  and + indicate the values of the functions respectively below and above the barrier 
We further assume at the permeable barrier continuity of the normal and tangential velocity components and that they are 

proportional to the sum of the corresponding stresses on either side of the barrier. Using the Navier---Stokes equation and the 

equation of continuity, we can write the boundary conditions for the amplitude of the vertical velocity component in the form [2] 
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Fig. I .  Critical Rayleigh number Ra = g/3Oh3/uX (a) and the wave number in units of  h -1 (b) 

as functions of  the relative heat conduction of the fluid ~ = tr m for various values of  normal 

barrier resistance a n in units of rl/h: 1) a n = 0; 2) 100; 3) 400; 4) 104; 5) o o .  
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Fig. 2. Neutral curves for the relative heat conduction r = 1 of the fluid at various normal barrier 

resistances a n in units of  r//h: 1) a n = 104; 2) 3160; 3) 2000; 4) 1000. Ra = gflOh3/vX; k, h -1. 

z = O" v_ = v+, v2  = v - ,  v~" - -  v"-" = - -  ank2v, v~- - -  v'-" = cz~v'. (4) 

The coefficients ot and a r, characterizing the averaged effect of  the barrier on the fluid flow, in terms of their sense represent 

the normal and tangential resistance of  the fluid. For the measurement units we have taken the ratio of  dynamic viscosity to the 

half-thickness of  the layer. 

The uniform boundary-value problem (1)-(4) makes it possible to find the critical Rayleigh numbers at which convection begins, 

and also the form of the critical motions. 

In view of the symmetry of  the problem, the perturbations break down into two classes: even [v(--z) = v(z)] and odd [v(--z) = 

--v(z)], which we will construct in the region [0, 1]. The boundary conditions in the middle of  the layer will be reformulated to 

account for the even properties of  the functions. The conditions of continuity for the even functions are satisfied automatically, 

while the value of  each odd function for z = +0  is assumed to be equal to half the discontinuity defined by conditions (3) and 

(4). 

For the even solution we have 

" ' "  1 
z- - - -q-O:  v ' = O ,  v - -  --~z,~k2v, 

2 
0 '  = 0. (5)  

For the noneven solution from (3) and (4) it follows that 

1 
z = q - 0 :  v - - O ,  v " = - - - o : , v ' ,  0 = 0 .  (6) 

2 

As we can see from boundary conditions (5) and (6), the critical Rayleigh number for the even perturbation depends exclusively 

on the normal resistance of  the barrier, while in the case of noneven perturbation it depends on the tangential resistance. Let 
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us also note that the normal resistance of  the grid enters the problem in the form of the parameter an k2, so that for long wave 

even perturbations the resistance of  the grid will therefore effectively be reduced. 

Equations (1) were integrated numerically by the Runge.-Kutta method. Three linearly independent solutions were constructed 

to satisfy the boundary bonditions for z = 1. The linear combination of these solutions for z = 0 must satisfy boundary conditions 

(5) or (6). The critical Rayleigh numbers were found from the condition of  solvability for the derived algebraic system of equations 

for weighted coefficients. 

Calculations showed that in the entire range of  variations in problem parameters the most dangerous are the even perturbations. 

The critical Rayleigh number and the wave number of  the even perturbations, as functions of the relative thermal conductivity of 

the fluid, are shown in Fig. 1 for various barrier resistances. 

In the limit cases of  an absolutely permeable (r, n = 0) and impermeable (a n = oo) barrier, according to [5], the increase 

in the thermal conductivity of  the fluid leads to a reduction in the stability of  mechanical equilibrium. In these cases, the neutral 

curves Ra(k) exhibit a single minimum, which as r ---, c~ is displaced toward the k = 0 axis. 

With low barrier resistances, the most dangerous perturbations are the ones in which circulation encompasses the entire layer. 

Therefore, the nature of  the relationship between the critical parameters and ~; remains the same as in the case when a n = 0, although 

stability is elevated as the barrier resistance increases. 

As demonstrated by calculations, for larger barrier resistances (a n ~ 400) the form of the perturbations depends significantly 

on the wave number. With k m 1, convective motion exhibits a two-tiered structure, whereas when k << 1 the convective vortex 

occupies both halves of  the layer. At a certain value for the thermal conductivity of  the fluid, i.e., ~*(an), competition is established 

between these forms of  motion. On the neutral curve we observe two minima, and on transition through r* the critical wave number 

undergoes a discontinuous change. Thus, for a n = 104 the transition to long wave instability with an increase in the heat conduction 

of  the fluid occurs at ~* = 1.96, with the wave number changing from 1.64 to 0.051. Let us note that the wave number of  the 

critical perturbations in the case of  long wave instability for large resistances on the part of  the permeable barrier turns out to 

be considerably smaller than in the case in which there is no barrier. 

The transition from the shortwave instability to the longwave instability with a change in barrier resistance for the case in 

which ~ = 1 is illustrated in Fig. 2. For resistances a n = 104 we have a shortwave instability with k = 1.9. On this same neutral 

curve we also have a local minimum Ra = 1758, k = 0.055. With a reduction n the barrier resistance the longwave minimum of 

the neutral curve drops off rapidly, whereas its shortwave branch shows only slight deformation. When a n -- 3160 the instability 

changes into longwave perturbations. 
The sharp drop in stability on transition to longwave perturbations for grids with large concentration can also be seen in Fig. 

1. For any a n on transition through r* the critical Rayleigh number rapidly approaches the critical value for the case a n = 0. 

A special case is the impermeable barrier (a n = oo) for which transition to the longwave critical perturbations occurs slowly. 

Attainment during the experiment of  a discontinuous jump in the transition to the longwave instability in the case of  high 

barrier resistance can be eliminated through an insufficient horizontal dimension for the fluid layer, the critical perturbation remaining 

the same as in the case of  an impermeable barrier. 

NOTATION 

g, free-fall acceleration; 8, u, 7, and X, coefficients of  thermal expansion, kinematic viscosity, dynamic viscosity, and thermal 

diffusivity; h, half the thickness of  the layer; O, the half-difference of  the temperatures at the boundaries of  the fluid layer; ~l and 

~:m, the coefficients of  thermal conductivity for the fluid and for the solid mass block; ~ = ~l/~m; k, the wave number for the 

perturbations, expressed in units of  h--l; Ra, 'the Rayleigh number; a n and at ,  normal and tangential resistance of  the permeable 

barriers; z, vertical coordinate, reckoned from the middle of  the fluid layers; v and 0, amplitudes of  the normal perturbations of 

the vertical components of  velocity and temperature in the fluid layer. 
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